Iفي مجال التطبيق مغناطيسات NdFeBهناك علاقة وثيقة بين المغناطيسية ودرجة الحرارة. عندما تتجاوز درجة حرارة المغناطيس حدًا معينًا، يحدث نزع مغناطيسي دائم، وتختلف درجة حرارة التشغيل القصوى التي تتحملها مغناطيسات NdFeB باختلاف أنواعها.
درجة حرارة كوري
عند دراسة تأثير درجة الحرارة على المغناطيسية، تُعدّ "درجة حرارة كوري" مفهومًا أساسيًا. يرتبط هذا المصطلح ارتباطًا وثيقًا بعائلة كوري. في أوائل القرن التاسع عشر، اكتشف الفيزيائي الشهير بيير كوري في أبحاثه التجريبية أنه عند تسخين مغناطيس إلى درجة حرارة معينة، تختفي مغناطيسيته الأصلية تمامًا. لاحقًا، أُطلق على هذه الدرجة الحرارة اسم "نقطة كوري"، والمعروفة أيضًا بدرجة حرارة كوري أو نقطة التحول المغناطيسي.
وفقًا للتعريف المهني، تُعرف درجة حرارة كوري بأنها درجة الحرارة الحرجة التي تنتقل عندها المواد المغناطيسية بين المواد المغناطيسية الحديدية والمغناطيسية البارامغناطيسية. عندما تكون درجة حرارة المحيط أقل من درجة حرارة كوري، تُظهر المادة خصائص مغناطيسية حديدية؛ وعندما تكون درجة الحرارة أعلى من درجة حرارة كوري، تتحول المادة إلى بارامغناطيسية. يعتمد ارتفاع نقطة كوري بشكل أساسي على التركيب الكيميائي وخصائص البنية البلورية للمادة.
عندما تتجاوز درجة حرارة المحيط درجة حرارة كوري، تشتد الحركة الحرارية لبعض جزيئات المغناطيس، ويتلف هيكل المجال المغناطيسي، وتختفي سلسلة من الخصائص المغناطيسية الحديدية المرتبطة بها، مثل النفاذية المغناطيسية العالية، وحلقات الهستيريسيس، والانقباض المغناطيسي، وما إلى ذلك، ويتعرض المغناطيس لإزالة مغناطيسية لا رجعة فيها. على الرغم من إمكانية إعادة مغناطيسية المغناطيس المزال مغناطيسيته، إلا أن جهد المغناطيسية المطلوب أعلى بكثير من جهد المغناطيسية الأول، وبعد إعادة المغناطيسية، يصعب عادةً استعادة قوة المجال المغناطيسي التي يولدها المغناطيس إلى مستواها الأولي.
مادة | درجة حرارة كوري Tc (℃) | أقصى درجة حرارة تشغيل Tw (℃) |
نيديوم-حديد-بورون | 312 | 230 |
درجة حرارة العمل
يشير إلى نطاق درجة الحرارة الذي مغناطيس نيوديميوم يتحمل الاستخدام الفعلي. ونظرًا لاختلاف الاستقرار الحراري للمواد المختلفة، يختلف نطاق درجة حرارة التشغيل المقابلة. تجدر الإشارة إلى أن أقصى درجة حرارة تشغيل للنيوديميوم أقل بكثير من درجة حرارة كوري الخاصة به. ضمن نطاق درجة حرارة التشغيل، مع ارتفاع درجة الحرارة، تنخفض القوة المغناطيسية للمغناطيس، ولكن بعد التبريد، يمكن استعادة معظم خصائصه المغناطيسية.
هناك علاقة طردية واضحة بين درجة حرارة كوري ودرجة حرارة التشغيل: فكلما ارتفعت درجة حرارة كوري للمادة المغناطيسية، ارتفع الحد الأعلى المقابل لدرجة حرارة التشغيل، وتحسن استقرارها الحراري. على سبيل المثال، يمكن زيادة درجة حرارة كوري للمادة المغناطيسية الملبدة بإضافة عناصر مثل الكوبالت والتيربيوم والديسبروسيوم إلى المواد الخام، ولذلك تحتوي المنتجات عالية القوة (مثل سلسلة H وSH وغيرها) عادةً على الديسبروسيوم.
حتى بالنسبة لنفس نوع المغناطيس، تختلف مقاومة درجات الحرارة باختلاف أنواع المنتجات نظرًا لاختلاف تركيبها وبنيتها الدقيقة. على سبيل المثال، يتراوح أقصى نطاق لدرجة حرارة التشغيل لمختلف أنواع المنتجات بين 80 و230 درجة مئوية.
مستوى الإكراه | أقصى درجة حرارة للعمل | |
N | طبيعي | 80 درجة مئوية |
M | واسطة | 100 درجة مئوية |
H | عالي | 120 درجة مئوية |
SH | سوبر هاي | 150 درجة مئوية |
UH | عالية للغاية | 180 درجة مئوية |
EH | عالية للغاية | 200 درجة مئوية |
AH | عالية بشكل عدواني | 230 درجة مئوية |
العوامل المؤثرة على درجة حرارة العمل الفعلية لمغناطيس NdFeB
حقوق النشر
@2024 Nanjing Huajin Magnet Co., Ltd. جميع الحقوق محفوظة
.
خريطة الموقع
/ المدونة
/ Xml
/ سياسة الخصوصية
الشبكة المدعومة