مغناطيس NDFEB الملبد هي مكونات وظيفية أساسية وتستخدم على نطاق واسع في الأدوات والمعدات مثل المحركات ، الكهربائي ، الجذب المغناطيسي ، وأجهزة الاستشعار. تخضع المغناطيس للعوامل البيئية مثل القوة الميكانيكية والتغيرات الساخنة والباردة والحقول الكهرومغناطيسية المتناوبة. إذا كانت بيئة العمل قد تجاوزت المعيار ، فستؤثر بشكل خطير على وظيفة المعدات وتسبب خسائر كبيرة. لذلك ، بالإضافة إلى الأداء المغناطيسي ، نحتاج أيضًا إلى الانتباه إلى الخصائص الميكانيكية والحرارية والكهربائية للمغناطيس ، والتي ستساعدنا على تصميم المغناطيس واستخدامها بشكل أفضل ، وهو أيضًا أهمية كبيرة لتحسين استقرار الخدمة وموثوقيتها.
الخصائص الميكانيكية
تشمل الخواص الميكانيكية للمغناطيس صلابة ، قوة ضغط ، قوة الانحناء ، قوة الشد ، صلابة التأثير ، إلخ. NDFEB هي مادة هشة نموذجية. إن صلابة ومغناطيس المضغوط عالية ، لكن قوة الانحناء ، وقوة الشد ، ومتانة التأثير سيئة. هذا يجعل من السهل على المغناطيس فقدان الزوايا أو حتى الكراك أثناء المعالجة والمغنطة والتجميع. عادة ما يتم تثبيت المغناطيس في المكونات والمعدات عن طريق فتحات أو المواد اللاصقة ، كما يتم توفير امتصاص الصدمات وحماية التخزين المؤقت.
سطح الكسر من NDFEB الملبد هو كسر بين الخلايا النموذجي. يتم تحديد خصائصها الميكانيكية بشكل أساسي من خلال بنيةها المتعددة المعقدة وترتبط أيضًا بتكوين الصيغة ، ومعلمات العملية ، والعيوب الهيكلية (الفراغات ، والحبوب الكبيرة ، والخلع ، وما إلى ذلك). بشكل عام ، كلما انخفض كمية الأرض النادرة ، كلما كانت الخصائص الميكانيكية للمادة أسوأ. من خلال إضافة المعادن ذات النقطة المنخفضة مثل Cu و GA بكميات مناسبة ، يمكن تعزيز صلابة مغناطيس النيوديميوم عن طريق تحسين توزيع مراحل حدود الحبوب. يمكن أن تشكل إضافة المعادن عالية الميل مثل Zr و NB و Ti مراحل هطول الأمطار عند حدود الحبوب ، والتي يمكن أن تنقذ الحبوب وتمنع تمديد الكراك ، مما يساعد على تحسين القوة والصلبة ؛ لكن الإضافة المفرطة للمعادن ذات النقطة العالية ستؤدي إلى أن تكون صلابة المادة المغناطيسية مرتفعة للغاية ، مما يؤثر بشكل خطير على كفاءة المعالجة.
في عملية الإنتاج الفعلية ، من الصعب أخذ كل من الخصائص المغناطيسية والخصائص الميكانيكية للمواد المغناطيسية في الاعتبار. نظرًا لمتطلبات التكلفة والأداء ، فغالبًا ما يكون من الضروري التضحية بسهولة المعالجة والتجميع.
الخصائص الحرارية
تشمل مؤشرات الأداء الحراري الرئيسي لمغناطيات NDFEB الموصلية الحرارية ، وسعة حرارة محددة ومعامل التمدد الحراري.
يتناقص أداء مغناطيس النيوديميوم تدريجياً مع زيادة درجة الحرارة ، وبالتالي يصبح ارتفاع درجة حرارة المحرك المغناطيسي الدائم عاملًا رئيسيًا يؤثر على ما إذا كان يمكن أن يعمل المحرك تحت الحمل لفترة طويلة. يمكن أن يتجنب التوصيل الجيد للحرارة وتبديد الحرارة ارتفاع درجة الحرارة والحفاظ على التشغيل العادي للمعدات. لذلك ، نأمل أن يكون لدى الفولاذ المغناطيسي توصيل حراري أعلى وقدرة حرارة محددة ، بحيث يمكن إجراء الحرارة بسرعة وتبديدها ، وفي الوقت نفسه ، سيكون ارتفاع درجة الحرارة أقل في نفس الحرارة.
الخصائص الكهربائية
في بيئة المجال الكهرومغناطيسي المتناوب للمحرك المغناطيسي الدائم ، سوف ينتج الفولاذ المغناطيسي فقدان تيار الدوامة ويسبب ارتفاع درجة الحرارة. نظرًا لأن فقدان تيار الدوامة يتناسب عكسيا مع المقاومة ، فإن زيادة مقاومة المغناطيس الدائم NDFEB سوف يقلل بشكل فعال من فقدان تيار الدوامة وارتفاع درجة حرارة المغناطيس. تتمثل هيكل الفولاذ المغناطيسي المثالي في المقاومة العالية في تشكيل طبقة عزل يمكن أن تمنع انتقال الإلكترون عن طريق زيادة إمكانات القطب في الطور الغني بالأرض ، وذلك لتحقيق التفاف وفصل حدود الحبوب عالية المقاومة نسبة إلى حبيبات المرحلة الرئيسية ، وبالتالي تحسين مقاومة مغناطيس NDFEB الملبد. ومع ذلك ، لا يمكن أن يحل المنشطات للمواد غير العضوية ولا تقنية الطبقات مشكلة تدهور الأداء المغناطيسي. في الوقت الحاضر ، لا يوجد أي تحضير فعال للمغناطيس مع كل من المقاومة العالية والأداء العالي.
حقوق النشر
@2024 Nanjing Huajin Magnet Co., Ltd. جميع الحقوق محفوظة
.
خريطة الموقع
/ المدونة
/ Xml
/ سياسة الخصوصية
الشبكة المدعومة